RADARSAT-2 and RCM Conjunction Analysis and Mitigation Operations

Casey Lambert (MDA), Camille Decoust (MDA), Bryan Cooke (SED)
Presentation Outline

- Introduction to RADARSAT-2
- Collision Avoidance (COLA) Strategy
- Conjunction History
- Advanced Screening
- RADARSAT Constellation Mission (RCM)
- Conclusions
Introduction to RADARSAT-2

- Launch: December 14, 2007
- Routine Operations: April 27, 2008
- C-Band Synthetic Aperture Radar (SAR) mission
- 20 beam modes
 - Resolution from 1 m to 100 m
 - Scene size from 18 km to 500 km

Design life of 7 years

Acquired over >500,000 images
Introduction to RADARSAT-2

Orbit

- Sun-synchronous, dusk-dawn orbit
- Altitude of 781 - 797 km
- 24 day repeat ground-track (343 orbits)

<table>
<thead>
<tr>
<th>Orbit parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA</td>
<td>7167 km</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.001155</td>
</tr>
<tr>
<td>Inclination</td>
<td>98.58°</td>
</tr>
<tr>
<td>Argument of perigee</td>
<td>90°</td>
</tr>
<tr>
<td>LTAN</td>
<td>18:01</td>
</tr>
</tbody>
</table>

Source: STK, AGI
Introduction to RADARSAT-2

Propulsion

- Six 1-N Reaction Control Thrusters
 - Four in nadir direction (+Z)
 - Two in velocity direction (-X)
 - Used alternatively for drag make-up and COLA maneuvers

Fuel Budget

<table>
<thead>
<tr>
<th></th>
<th>Original (kg)</th>
<th>Current (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usable Fuel</td>
<td>127.6</td>
<td>118.9</td>
</tr>
<tr>
<td>Orbit Acquisition</td>
<td>28.1</td>
<td>7</td>
</tr>
<tr>
<td>Orbit Maintenance</td>
<td>5.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Decommissioning</td>
<td>68.8</td>
<td>75</td>
</tr>
<tr>
<td>Margin</td>
<td>25.1</td>
<td>39.9</td>
</tr>
</tbody>
</table>

ORIGINAL FUEL BUDGET DID NOT INCLUDE ANYTHING FOR COLA MANEUVERS

CURRENTLY ENOUGH FUEL MARGIN FOR EXTENSIVE COLA MANEUVERS AND DE-ORBIT
Collision Avoidance Strategy

- RADARSAT-2 was launched with no formal collision avoidance strategy
- Orbit is now in one of the most populated debris zones
 - 2007 - Fengyuin-1C satellite destroyed (2600 pieces of trackable debris)
 - 2009 - Iridium and Cosmos collision (1250 pieces of trackable debris)
 - 2015 - US weather satellite, DMSP-F13, exploded (147 pieces of trackable debris and RADARSAT-2 identified as one of ten at-risk satellites)

- First conjunction alert received in March 2009 from Canadian Space Agency (CSA)
- Email communication with JSpOC to confirm orbit data
- Initial effort made (2009) to develop effective procedure for analyzing and assessing risk

Source: NASA UNOOSA Report, 2011
Collision Avoidance Strategy

Originally
- Risk assessment based on miss distance and uncertainty
- Collision avoidance box – miss distance of 200 m radial and 1000 m in-track and cross-track
- Data quality box – combined covariance must be below a certain threshold

Currently
- Primary assessment based on Probability of Collision (PoC)
- Data quality is still an important factor
- Consider other factors including PoC sensitivity, geometry, Time to Closest Approach (TCA)
Collision Avoidance Strategy

COLA Tools and Notification:

- Notification of close approaches comes from JSpOC Conjunction Data Messages (CDM)
 - Recently switched from Emergency Screening to Advanced Screening
- Two different tools to poll SpaceTrack website
 - CRAMS – Canadian Space Agency (CSA)
 - JAC – Centre National d’Etudes Spatiales (CNES)
- CRAMS filters CDMs based on PoC, miss distance, and time to TCA
 - Alerts via message to control-room screen, sends email to operations team
 - Email includes an Excel spreadsheet with CM data and value-added analysis results including PoC and delta-V tradespace
- JAC sends alerts by email for all new conjunctions
 - Flexible in-depth analysis tools frequently used
Collision Avoidance Strategy

JSpOC www.Space-Track.org

CRAMS - CSA
- Regularly polls Space-track website
- Sends Excel spreadsheet by email with conjunction analysis
- Sends alert to screen in Control Room

JAC - CNES
- Regularly polls Space-track website
- Sends notification email
- Provides several interactive tools to assess risk and plan maneuver

Mission Operations – MDA
- Receive alerts/CDMs from redundant systems
- Assess risk using JAC/CRAMS interactive tools
- If risk is high and JSpOC tracking data is good, plan a maneuver (ΔV, time of burn) using JAC
- ~8 hours notice needed to plan/execute emergency maneuver
- To minimize deviations from ground-track, follow-up maneuvers are planned/executed shortly after conjunction if necessary
Conjunction History

- As of October 6, 2016:
 - 11 collision avoidance (COLA) maneuvers performed

<table>
<thead>
<tr>
<th>#</th>
<th>COLA Date</th>
<th>PoC</th>
<th>ΔV (cm/s)</th>
<th>Object</th>
<th>Maneuver Time (hrs before TCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>June 2, 2010</td>
<td>N/A</td>
<td>0.65</td>
<td>Orbcomm FM30</td>
<td>20:53</td>
</tr>
<tr>
<td>2</td>
<td>May 25, 2011</td>
<td>7.7x10^{-3}</td>
<td>1.09</td>
<td>Cosmos 2251 Deb</td>
<td>23:13</td>
</tr>
<tr>
<td>3</td>
<td>Oct. 6, 2011</td>
<td>1.2x10^{-9}</td>
<td>0.56</td>
<td>Pegasus R/B(2)</td>
<td>37:48</td>
</tr>
<tr>
<td>4</td>
<td>May 1, 2012</td>
<td>< 1 x10^{-10}</td>
<td>1.40</td>
<td>Cosmos 1302</td>
<td>33:35</td>
</tr>
<tr>
<td>5</td>
<td>July 1, 2013</td>
<td>2.3x10^{-4}</td>
<td>0.17</td>
<td>Cosmos 2251 Deb</td>
<td>31:56</td>
</tr>
<tr>
<td>5</td>
<td>July 1, 2013</td>
<td>< 1 x10^{-10}</td>
<td>2.0</td>
<td>Cosmos 2251 Deb</td>
<td>6:21</td>
</tr>
<tr>
<td>6</td>
<td>Jan. 30, 2014</td>
<td>1.5x10^{-3}</td>
<td>2.68/2.68</td>
<td>Fengyun 1C Deb</td>
<td>4:54/4:04</td>
</tr>
<tr>
<td>7</td>
<td>Jan. 5, 2015</td>
<td>2.4x10^{-3}</td>
<td>0.39</td>
<td>Thorad Agena D Deb</td>
<td>19:18</td>
</tr>
<tr>
<td>8</td>
<td>Mar. 23, 2015</td>
<td>1.6x10^{-3}</td>
<td>0.92</td>
<td>Cosmos 2251 Deb</td>
<td>31:03</td>
</tr>
<tr>
<td>9</td>
<td>Aug. 13, 2015</td>
<td>7.7x10^{-3}</td>
<td>1.80</td>
<td>Cosmos 2251 Deb</td>
<td>20:41</td>
</tr>
<tr>
<td>10</td>
<td>Mar. 22, 2016</td>
<td>2.2x10^{-4}</td>
<td>0.71</td>
<td>Fengyun 1C Deb</td>
<td>11:45</td>
</tr>
<tr>
<td>11</td>
<td>Aug. 18, 2016</td>
<td>5.0x10^{-3}</td>
<td>0.67</td>
<td>Cosmos 2251 Deb</td>
<td>19:01</td>
</tr>
</tbody>
</table>
Conjunction History

- Retroactive analysis using PoC instead of miss distance, reveals three maneuvers were performed for low risk cases

<table>
<thead>
<tr>
<th>#</th>
<th>COLA Date</th>
<th>PoC</th>
<th>ΔV (cm/s)</th>
<th>Object</th>
<th>Maneuver Time (hrs before TCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jun. 2, 2010</td>
<td>N/A</td>
<td>0.65</td>
<td>Orbcomm FM30</td>
<td>20:53</td>
</tr>
<tr>
<td>2</td>
<td>May 25, 2011</td>
<td>7.7x10^-3</td>
<td>1.09</td>
<td>Cosmos 2251 Deb</td>
<td>23:13</td>
</tr>
<tr>
<td>3</td>
<td>Oct. 6, 2011</td>
<td>1.2x10^-9</td>
<td>0.56</td>
<td>Pegasus R/B(2)</td>
<td>37:48</td>
</tr>
<tr>
<td>4</td>
<td>May 1, 2012</td>
<td>< 1 x10^-10</td>
<td>1.40</td>
<td>Cosmos 1302</td>
<td>33:35</td>
</tr>
<tr>
<td>5</td>
<td>Jul. 1, 2013</td>
<td>2.3x10^-4</td>
<td>0.17</td>
<td>Cosmos 2251 Deb</td>
<td>31:56</td>
</tr>
<tr>
<td>5</td>
<td>Jul. 1, 2013</td>
<td>< 1 x10^-10</td>
<td>2.0</td>
<td>Cosmos 2251 Deb</td>
<td>6:21</td>
</tr>
<tr>
<td>6</td>
<td>Jan. 30, 2014</td>
<td>1.5x10^-3</td>
<td>2.68/2.68</td>
<td>Fengyun 1C Deb</td>
<td>4:54/4:04</td>
</tr>
<tr>
<td>7</td>
<td>Jan. 5, 2015</td>
<td>2.4x10^-3</td>
<td>0.39</td>
<td>Thorad Agena D Deb</td>
<td>19:18</td>
</tr>
<tr>
<td>8</td>
<td>Mar. 23, 2015</td>
<td>1.6x10^-3</td>
<td>0.92</td>
<td>Cosmos 2251 Deb</td>
<td>31:03</td>
</tr>
<tr>
<td>9</td>
<td>Aug. 13, 2015</td>
<td>7.7x10^-3</td>
<td>1.80</td>
<td>Cosmos 2251 Deb</td>
<td>20:41</td>
</tr>
<tr>
<td>10</td>
<td>Mar. 22, 2016</td>
<td>2.2x10^-4</td>
<td>0.71</td>
<td>Fengyun 1C Deb</td>
<td>11:45</td>
</tr>
<tr>
<td>11</td>
<td>Aug. 18, 2016</td>
<td>5.0x10^-3</td>
<td>0.67</td>
<td>Cosmos 2251 Deb</td>
<td>19:01</td>
</tr>
</tbody>
</table>
Conjunction History

July 1, 2013 – COLA Maneuver #5

- First maneuver ($\Delta V = 0.17$ cm/s) performed 32 hours before TCA, based on miss distance of 110 m
- Expected in-track miss distance to increase to 270 m
- 16 hours before TCA, new CDM arrived with in-track miss distance of only 127 m
- Second COLA maneuver ($\Delta V = 2.0$ cm/s) performed 6 hours before TCA
- PoC was not known at the time, but looking back $\text{PoC} < 1 \times 10^{-10}$
- In hindsight, second COLA maneuver was not necessary
Conjunction History

<table>
<thead>
<tr>
<th>TCA</th>
<th>Notice (h)</th>
<th>PoC</th>
<th>Miss Dist. (m)</th>
<th>Sec. in-track σ (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct. 10, 2010</td>
<td>80</td>
<td>1.5×10^{-4}</td>
<td>940</td>
<td>631</td>
</tr>
<tr>
<td>Nov. 5, 2010</td>
<td>16</td>
<td>4.2×10^{-4}</td>
<td>529</td>
<td>31</td>
</tr>
<tr>
<td>May 25, 2011</td>
<td>52</td>
<td>7.7×10^{3}</td>
<td>101</td>
<td>263</td>
</tr>
<tr>
<td>Jan. 25, 2012</td>
<td>55</td>
<td>2.0×10^{-4}</td>
<td>927</td>
<td>2427</td>
</tr>
<tr>
<td>June 27, 2012</td>
<td>70</td>
<td>1.1×10^{-4}</td>
<td>880</td>
<td>5368</td>
</tr>
<tr>
<td>Oct. 22, 2012</td>
<td>54</td>
<td>1.6×10^{-3}</td>
<td>116</td>
<td>1261</td>
</tr>
<tr>
<td>July 1, 2013</td>
<td>74</td>
<td>2.3×10^{-4}</td>
<td>89</td>
<td>98</td>
</tr>
<tr>
<td>Nov. 10, 2013</td>
<td>26</td>
<td>7.3×10^{-4}</td>
<td>41</td>
<td>732</td>
</tr>
<tr>
<td>Jan. 2, 2014</td>
<td>70</td>
<td>1.2×10^{-4}</td>
<td>979</td>
<td>4631</td>
</tr>
<tr>
<td>Jan. 12, 2014</td>
<td>68</td>
<td>5.8×10^{-4}</td>
<td>427</td>
<td>2617</td>
</tr>
<tr>
<td>Jan. 30, 2014</td>
<td>61</td>
<td>4.7×10^{-4}</td>
<td>898</td>
<td>2570</td>
</tr>
<tr>
<td>Nov. 9, 2014</td>
<td>41</td>
<td>5.8×10^{-4}</td>
<td>761</td>
<td>13000</td>
</tr>
<tr>
<td>Nov. 21, 2014</td>
<td>26</td>
<td>2.0×10^{-4}</td>
<td>261</td>
<td>3473</td>
</tr>
<tr>
<td>Jan. 5, 2015</td>
<td>52</td>
<td>2.4×10^{3}</td>
<td>134</td>
<td>212</td>
</tr>
<tr>
<td>Mar. 23, 2015</td>
<td>62</td>
<td>1.6×10^{3}</td>
<td>108</td>
<td>699</td>
</tr>
<tr>
<td>Aug. 13, 2015</td>
<td>27</td>
<td>7.7×10^{-3}</td>
<td>29</td>
<td>398</td>
</tr>
<tr>
<td>Nov. 21, 2015</td>
<td>18</td>
<td>1.1×10^{-4}</td>
<td>98</td>
<td>5908</td>
</tr>
<tr>
<td>Mar. 22, 2016</td>
<td>19</td>
<td>2.2×10^{-4}</td>
<td>150</td>
<td>504</td>
</tr>
<tr>
<td>May 4, 2016</td>
<td>58</td>
<td>3.2×10^{-4}</td>
<td>417</td>
<td>1041</td>
</tr>
<tr>
<td>Jul. 14, 2016</td>
<td>93</td>
<td>5.7×10^{-4}</td>
<td>245</td>
<td>1911</td>
</tr>
<tr>
<td>Aug. 18, 2016</td>
<td>29</td>
<td>2.1×10^{-5}</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>Oct. 4, 2016</td>
<td>28</td>
<td>1.6×10^{-3}</td>
<td>468</td>
<td>1066</td>
</tr>
</tbody>
</table>

Looking Back:

22 events with \(\text{PoC} > 1 \times 10^{-4} \) maneuvers performed for 8

Not Inclined to Maneuver When Secondary Uncertainty is Large
Advanced Screening

- Signed up for JSpOC Advanced Screening in August 2016

Advantages
- Longer lead times for high risk conjunctions
- More conjunction history available at decision time
- Better understanding of limitations of JSpOC data

Disadvantages
- Longer lead times for high risk conjunctions
- Many more notifications received = more noise
- Better understanding of limitations of JSpOC data
Advanced Screening

Example of COLA maneuver with Advanced Screening results

- Routine maneuver executed 137 hours prior to TCA
 - CDMs 1 to 5 used pre-burn tracking data
 - CDM 6 used both pre-burn and post-burn tracking data
 - CDMs 7 to 19 used post-burn tracking data

Image from JAC
Advanced Screening

- First planned COLA maneuver based on CDM 7 to 12, to be executed 43 hours prior to TCA
- CDM 13 and 14 showed shift in primary position and planned maneuver was cancelled
- After CDM 15, decision was made to perform COLA maneuver 19 hours prior to TCA
RADARSAT Constellation Mission (RCM)

- Earth Imaging Mission – Synthetic Aperture Radar
- Developed by MDA for the Canadian Space Agency (CSA)
- Mission Objectives:
 - Support the operational requirements of Government departments
 - Will provide greatly improved operational capability and ensure data continuity for existing users of RADARSAT-2
- Main application areas are:
 - Maritime Surveillance (ice, oil, wind and ship monitoring)
 - Ecosystem monitoring (forestry, agriculture, wetlands, coastal changes)
 - Disaster management (mitigation, warning, response, recovery)

12 day repeat cycle per satellite
Constellation repeat period of 4 days
RADARSAT Constellation Mission (RCM)

Orbit
- Dusk-dawn sun-synchronous frozen orbit
- Repeat cycle – 12 days (179 orbits)
- Four day revisit

RCM Orbit Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>593 km</td>
</tr>
<tr>
<td>Inclination</td>
<td>97.74 deg.</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.00106</td>
</tr>
<tr>
<td>LTAN</td>
<td>18:00</td>
</tr>
</tbody>
</table>

- Requirement is to maintain orbit within a 100 m radius tube
Propulsion
- Six 1-N thrusters on –x panel
- All are canted +/-45° off –x axis
- No slew for drag make-up maneuvers
- Slew required for inclination maneuvers
RADARSAT Constellation Mission (RCM)

- Orbit control simulations suggest high frequency of maneuvers required to maintain tube
 - Solar maximum – one or more per day
 - Solar minimum – one maneuver every two to three days
RADARSAT Constellation Mission (RCM)

Challenges

- Due to high frequency of maneuvers, JSpOC tracking data may never be reliable
- Must rely on our predicted orbit data
 - New maneuvers planned twice a day so predicted orbit always changing

Questions

- How often to send ephemeris to JSpOC?
- Send predicted ephemeris or reference orbit or both?
Conclusions

Mission level

- COLA operations evolved from zero at start of mission
- Tools and expertise built up slowly over time
- Recently switched to Advanced Screening, which required adjustment in Operations

Tools

- JSpOC notification – heavy reliance, single-point failure
- CRAMS – valuable for notification, pre-screening, and analysis
- JAC – valuable for notification and analysis
Conclusions

Lessons Learned

- Using miss distance and uncertainty to assess risk resulted in occasional maneuvers for low PoC events
- PoC on its own leads to more maneuver candidates, but we avoid maneuvering when uncertainty is excessive

RCM

- Currently developing ground system for operations
- High frequency of maneuvers poses new challenges for operations
Acknowledgements

I would like to thank other people involved in developing and implementing RADARSAT-2 collision avoidance strategy:

- SED – Bryan Cooke, Greg Hammel
- Telesat – John Holland
- MDA – Camille Decoust, Philippe Rolland
RESTRICTION ON USE, PUBLICATION OR DISCLOSURE OF PROPRIETARY INFORMATION AND IMAGES
This document contains information and images that are proprietary to MacDonald, Dettwiler and Associates Ltd. (“MDA”), to its subsidiaries, and/or to third parties to which MDA may have legal obligations to protect such information or images from unauthorized disclosure, use or duplication. Any disclosure, use or duplication of this document or of any of the information or images contained herein is expressly prohibited.

The statements contained herein are based on good faith assumptions and provided for general information purposes only. These statements do not constitute an offer, promise, warranty or guarantee of performance. The products depicted are subject to change, and are not necessarily production representative. Actual results may vary depending on certain events or conditions. This document should not be used or relied upon for any purpose other than that intended by MDA.

COPYRIGHT © 2016 MacDonald, Dettwiler and Associates Ltd., subject to General Acknowledgements for the third parties whose images have been used in permissible forms. All rights reserved.

GENERAL ACKNOWLEDGEMENTS
Certain images contained in this document are property of third parties:
Image of JAC software on P. 15 and 16. COPYRIGHT © (JAC) CNES. All rights reserved.